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PREFACE

I have always been interested in fluid flows and ways

" of analyzing them. When I was offered the opportunity by

Maj Hodge to investigate a method of analyzing the

*- nonisothermal wall effect in hypersonic flow, I was both

*. excited and interested in the project. The study itself was

intended to be a proof-of-concept for the numerical methods

used and a stage to show the aerospace industry that the

* nonisothermal wall effect is important and can be included

in design analyses. While the results of the thesis have

shown that the particular method used is not the optimal

approach, I feel that the objectives of the study have been

0met.

Attempting any project of this size creates a long list

of indebtedness; the fact that is was necessary for me to

continue the effort after leaving AFIT only lengthens that

list. One of the most important people, of course, has been

* my advisor, Maj James K. Hodge. His insight, direction, and

especially patience have been invaluable to me in completing

this project. The help I received from Dr Urmilla Ghia of

the University of Cincinnati while she was at AFIT as a

Distinguished Visiting Professor, and from Dr Wilbur Hankey

" and Dr Joseph Shang of the Flight Dynamics Laboratory at

. Wright-Patterson AFB has been valuable and illuminating. I

thank Dr Ghia for introducing me to the rigor necessary to
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wrest correct results from recalcitrant equations. Drs

Hankey and Shang were invaluable in helping master the

nuances of computational fluid dynamics.

Finishing a thesis after leaving AFIT requires the

active support from the people you work with. First on this

list is my branch chief, Mr Ed Barth. Without his active

support of my studies, this thesis would not have been

completed. Drs Phil Kessel and Joseph Baum have been very

helpful in aiding and critiquing my efforts. Finally, the

people in my section, who understood when their section

- chief was somewhat preoccupied at times.

The most important acknowledgment has been saved for

last. It is an oft-stated truism that "I couldn't have done

it without my wife." This is a truth that repetition cannot

dim. Mary has been at my side throughout AFIT and after,

egging me on, supporting me, and showing me that someone

else cared, too. More than anyone else, Mary, this one's

for you. And to David, who shouldn't have but did.

Timothy K. Roberts

° ..

*. .

-b ... , -="

'v .,' .'-. "'..','-',,.'" '. ': .. . ." .',. ,-".. "'-"-' .'.'.'--''.'..'-., '.': '.'..-'. .'.-..".-.. .-. .'..-.-.".. .- ,.. .- ".. .'".".,.,.



v TABLE OF CONTENTS

Page

2List of Figures.....................vi

List of Symbols.....................viii

Abstract........................x

I. Introduction.....................I

Background....................1
objective.....................3

II: Theoretical Development................4

overview.....................4
Boundary Layer Solutions............6
Reason For Discarding Boundary Layer

Approximations. ............................ 10
lavier-Stokes Solutions . .. .. .. .. .... 11
Heat Transfer Modeling.............12

III: Numerical Solution Method........... . . . 15

Overview . ..... 15
Numerical Grid* ....... .. . . .15

MacCormack's Explicit Method . . . . . . . . 18

IV: Program Description . . . . . . . . . . . . . . . 23

overview................... 23
NONISOCODE . .. .. .. .. .. ... ..... 23
STEADY....................30

V: Results........................32

overview......................32
Flow Conditions...................32
Limitations of Results.............33
Heat Transfer Solutions.............36
Flow Field Solutions ............... 39
Shock Wave-Boundary Layer Interactions .. 41
Numerical Oscillations ........ . . . . 43

VI: Conclusions and Recommendations . . . . . . . . . 45

overview . . . . . . . .. .. .. .. .... 45

Conclusions. ........ . . . . . . . . . 45

iv



-Nonisothermal Wall Effect.........45
Shock Wave-Boundary Layer Interaction .46

Pressure Spike Due To Nonisothermal
Wall...................46

Numerical Methods..................46
Recommendations.................48

Bibliography.........................79

Appendix A: Program Listings for NONISOCODE and STEADY 81

Vita............................117

9v



LIST OF FIGURES

Figure Page

1 Test Article ...... ............... 51

2 Semi-Adaptive Physical Grid .. ........ 52

3 Nondimensional Convective Heat Transfer
Coefficient ..... ................ 53

4 Isothermal Streamwise Velocity Surface . . . 54

5 Isothermal Streamwise Velocity Contours . . 55

6 Isothermal Normal Velocity Surface ..... 56

7 Isothermal Normal Velocity Contours .... 57

8 Isothermal Mach Number Surface ....... . 58

9 Isothermal Mach Number Contours ...... 59

10 Isothermal Temperature Surface . ...... . 60

11 Isothermal Temperature Contours . . . . . . 61

" 12 Isothermal Pressure Surface . . . . . . . . 62

13 Isothermal Pressure Contours .......... 63

14 Isothermal Density Surface .......... 64

15 Isothermal Density Contours . ......... 65

16 Nonisothermal Streamwise Velocity
Surface ...... .................. 66

17 Nonisothermal Streamwise Velocity

Contours .................. 67

18 Nonisothermal Normal Velocity Surface . . . 68

19 Nonisothermal Normal Velocity Contours . . . 69

20 Nonisothermal Mach Number Surface . . . . . 70

21 Nonisothermal Mach Number Contours . . . . . 71

22 Nonisothermal Temperature Surface ..... 72

vi



23 Nonisothermal Temperature Contours ........ 73

24 Nonisothermal Pressure Surface. ........ 74

25 Nonisothermal Pressure Contours ........ 75

26 Nonisothermal Density Surface ......... 76

27 Nonisothermal Density Contours. ........ 77

28 Surface Pressure................78

vii



LIST OF SYMBOLS

Symbol Definition Units

c speed of sound ft/sec

C specific heat ft-lbf/slug-deg R
p

e energy

h convective heat transfer Btu/ft2 -sec-deg R

coefficient

i,j,k orthogonal unit vectors

k thermal conductivity Btu/ft-sec-deg R

L reference length ft

MacCormack operator

M Mach number

P pressure lbf/ft 2

Pr Prandtl number

Q exponential stretching factor

r recovery factor

Re Reynolds number

T temperature degrees Rankine
(deg R)

t time seconds

U streamwise velocity ft/sec

V normal velocity

r
wedge deflection angle degrees

ratio of specific heats

/9 density slugs/ft 3

".', stress tensor components
.3".

v

vii

k-: . . . , " . :.- . S . , i i , ...- " .. - v . ? . .2.< i 2 . .. .-< . ; 1 .- . - - . . - . . . "



coefficient of viscosity slugs/ft-sec

A bulk viscosity

transformed normal coordinate

§" transformed streamwise coordinate

Subscripts

aw adiabatic wall

e value at edge of boundary layer

"i,j value at a plane location (i,j)

ref reference value

w value at the wall or surface

w 1  leading edge surface value

w2 trailing edge surface value

freestream value

Superscripts

n value at time step n

* value at Eckert's reference conditions

ix

6

.°...........................................



ABSTRACT

Wind tunnel tests of Space Shuttle Orbiter insulating

articles have demonstrated the presence of a nonisothermal

wall effect, which is a lag in heat transfer recovery after

the flow passes over a surface temperature discontinuity

resulting in a downstream transport of energy. Theoretical

analyses and numerical simulations of hypersonic flow over

discontinuous nonisothermal surfaces using boundary layer

theory have also indicated the presence of this effect.

This thesis studies the nonisothermal wall effect by

modeling the hypersonic flow over an inclined wedge with a

discontinuous nonisothermal surface. The flow is modeled

using the two-dimensional Navier-Stokes equations. MacCor-

mack's method is used to solve the Navier-Stokes equations.

The.program used to implement these methodologies is discus-

sed and a listing given. A semi-adaptive grid is used to

represent the physical conditions of the problem. Heat

transfer is presented as a nondimensional ratio of the local

convective heat transfer coefficient to a reference heat

transfer coefficient. i- . ' - -

The results of this study show that the nonisothermal

wall effect cn be successfully modeled using the two-dimen-

sional Navier-Stokes equations and MacCormack's explicit

method. The lag in the recovery of the convective heat

transfer coefficient is found to match lags seen in other

X
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analyses of the problem. Due to the high Mach number

modeled, a shock wave-boundary layer interaction is found to

have an effect on the heat transfer. A significant surface

pressure spike is found to occur downstream of the

discontinuity, which may be a result of the increase in size

of the momentum and thermal boundary layers at the

discontinuity.

The study concludes that the nonisothermal wall effect

can be adequately modeled by the two-dimensional Navier-

4Stokes equations; that the shock wave-boundary layer

interaction does have an effect on the heat transfer; and

that the occurence of a spike in surface pressure may be a

unique result of the nonisothermal wall effect. Significant

resommendations include the need for further study of the

nonisothermal wall effect, the need to use more optimal

grids and solution methods, the need to more thoroughly

investigate the shock wave-boundary layer effect, and the

need for further study of the surface pressure response to

the nonisothermal wall effect.

x
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A NUMERICAL SOLUTION OF A NONISOTHERMAL WALL

-USING THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS

CHAPTER I: INTRODUCTION

BACKGROUND

The development and use of the Space Transportation

System has given rise to some unanticipated problems in

reentry aerodynamics. The fact that the flow field over the

*Q Orbiter is laminar during reentry down to Mach 8 permits

* some phenomena usually masked by turbulent flow to become

evident. One such phenomenon which significantly affects

(5 the flow and the heat transfer is the nonisothermal wall

effect. This effect occurs when flow passes over a surface

composed of two or more materials of different thermal

response. The nonisothermal wall effect occurs at numerous

" locations on the Orbiter's surface. One such location is

the junction between the reusable carbon-carbon (RCC) nose-

cap and the reusable surface insulation (RSI) tiles. The

flow must pass over a discontinuity in wall temperature due

to different thermal responses. Similar discontinuities

exist at numerous other places on the Orbiter's surface.

During reentries of earlier space vehicles such as

Apollo or ballistic missile reentry vehicles, the flow over

6the vehicle was turbulent. The mixing inherent in turbulent

flow, augmented by the surface roughness of these vehicles,

-. . . . ..". . ..S. . .• . . - . , . . - , . . . , . . - . , . , , - . - . - . , . . .. • -



reduces the dramatic change in the wall heat transfer in-

duced by a nonisothermal wall condition. However, an Orbi-

ter reentry is characterized by a laminar flow field over

much of the vehicle's surface until the Orbiter has

decelerated to about Mach 8; at that point, transition to

turbulent flow is abrupt. Thus, the nonisothermal wall

effect becomes evident. In fact, the localized scorching

and discoloration seen on Columbia, Challenger, and Discove-

* ry seem to be caused by the nonisothermal wall effect.

Studies of wind tunnel tests of Orbiter insulating

articles have demonstrated the presence of this effect.

Theoretical analyses using boundary layer theory of

(. hypersonic nonisothermal walls had indicated that the

discontinuity in wall temperature would induce changes in

the flow. Numerical simulations using classical boundary-

layer theory backed up these findings. However, the wind

tunnel tests indicated that when the flow passed from a

steel surface to a surface of Orbiter insulation material,

* wall temperature recovery was much slower than that

predicted by either Eckert high-speed plate theory or boun-

dary-layer simulations. The data gathered in these tests

would seem to indicate that some other effect is at least as

important as normal diffusion in transporting energy.

First, axial diffusion of energy at a location where there

* is a discrete change in wall temperature over an axial

distance of order less than the normal boundary layer

2



thickness is one possible effect. Second, the viscous shock

wave - boundary layer interaction at hypersonic speeds

changes the pressure and heat transfer in an axial direc-

tion. These two effects have not been investigated on a

nonisothermal wall.

OBJECTIVE

The objective of this thesis is to numerically model

hypersonic flow over an isothermal and a nonisothermal wall

using the two-dimensional Navier-Stokes equations. The use

of the Navier-Stokes equations allows accurate modeling of

the axial diffusion if there is sufficient axial grid reso-

( lution. The nonisothermal wall effect should be very

noticeable. This paper will attempt to show the effects of

the shock wave-boundary layer interaction and axial diffu-

sion of energy on the nonisothermal wall effect.

3 A .



CHAPTER II: THEORETICAL DEVELOPMENT

OVERVIEW

The objective of this thesis is to numerically model

hypersonic flow over a wedge with and without a discontinui-

ty in surface temperature. This chapter will discuss the

theory behind the investigation. The problem will be

described and possible avenues of investigation proposed.

The best method of solution will be selected and reasons for

that selection will be discussed.

PROBLEM DESCRIPTION

The physical problem to be modeled is a wedge in a

hypersonic flow field. The problem is described in Cappela-

no (1:2-5), Hodge et al (2:2), and Woo (3). See Figure 1

for a picture. A steel test article has a 6 inch by 6 inch

test plate inserted in it 7 inches behind the leading edge

of the test article. Cappelano reviewed and interpreted

wind tunnel test data for three types of inserts: a thin

steel plate (for calibration), a piece of high temperature

reusable surface insulation (HRSI), and a piece of flexible

reusable surface insulation (FRSI). Woo reduced the data

for the HRSI and the FRSI test runs. Each insert was in-

strumented with varying numbers of surface thermocouples to

record the axial surface temperature distribution. The FRSI

insert had the most thermocouples and hence the most com-

plete set of axial surface temperature readings; thus, the

FRSI insert is modeled in this study. Only one angle of

.2
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attack is simulated in this study; restrictions on computer

time required that excursions to other angles of attack be

deferred to later studies.

The flow conditions modeled were as follows: a

freestream Mach number of 14.24, freestream stagnation tem-

perature of 2000 degrees Rankine (deg R), and a wedge incli-

nation angle of 3 degrees. The combination of high Mach

number and stagnation temperature produce a very low

freestream static temperature of 48 deg R; several problems

will arise from this. One of the immediate ones is that

gradients will be very steep in the boundary layer,

requiring significant resolution over a very thin layer.

1 Another problem is that any numerically-induced waves could

easily cause temperatures just in front of the leading edge

to become negative in the computations, thus causing the

solution to stop.

AVENUES OF INVESTIGATION

Several avenues of investigation are available to solve6

a problem such as this, depending on the desired results.

Approaches fall into two broad categories: boundary layer

solutions and Navier-Stokes solutions. Both approaches will

be examined in some detail below. Boundary-layer oriented

solutions offer a relatively fast solution, but at the

expense of some details of the flow. If the problem is such

that those approximations cannot be accepted, then the

5
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investigator must use methods of increasing complexity,

collectively known as the Navier-Stokes family of solutions.

There are several levels of complexity within the fami-

ly of Navier-Stokes solutions. Slightly more complicated,

but consequently more realistic, are the parabolized Navier-

Stokes equations. Beyond that are the "full" Navier-Stokes

equations in two or three dimensions. For reasons to be

explained in more detail below, a two-dimensional Navier-

Stokes solution was selected for this problem.

BOUNDARY LAYER SOLUTIONS

Boundary layer solutions depend on Prandtl's boundary

layer theory. The approximations made by this theory are

such that, in most cases, the solution resulting from boun-

dary layer theory is very close to the actual flow field.

This is especially true in low Mach number or incompressible

flows. At hypersonic Mach numbers, the boundary layer ap-

proximations tend to give results that diverge somewhat from

the actual flow field, especially when there is an interac-

* tion between the oblique shock and the viscous boundary

layer.

The boundary layer equations developed by Prandtl make

* several important assumptions. These assumptions follow

from some basic observations about the nature of any flow

field. The boundary layer is defined as that region near

qthe surface of the body in which the flow velocity increases

6
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from zero at the wall (due to the viscous nature of fluids)

to the freestream velocity at some distance from the body.

Experimentation has shown that this distance, the boundary

layer thickness, is normally quite small compared to other

characteristic lengths of the problem. Prandtl's boun-

dary layer equations can be derived from the full set of the

two-dimensional Navier-Stokes equations using order of mag-

nitude analysis. The variables used will be assumed to be

in nondimensional form. For example, the axial velocity

component is nondimensionalized with respect to the

freestream velocity and has an order of magnitude of one.

Likewise, the axial length is nondimensionalized with

respect to the length of the wedge and is of order one. The

normal length is nondimensionalized with respect to the

boundary layer thickness, delta. Thus, it has an order of

magnitude of delta. With these building blocks, the two-

dimensional Navier-Stokes equations can be reduced to

Prandtl's boundary layer equations.

Consider first the continuity equation:

4yI- (2.1)

S7

The appropriate order of magnitude has been written below

each term. In order to maintain the continuity equation, it

can be seen that the order of magnitude of the normal velo-

city component, v, must be delta.

Next, consider the axial linear momentum equation:

7
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The stress tensor terms 0-ii and _C12 are defined as (A:61):

- I ( , + - - 2.3a)
P ' l C ' .,''

Substituting these terms into Eq. 2.2:

-.. ? .1, 'I

- -(2.4)

2 . I

The appropriate order of magnitude has been written under

each term for which it is known. By discarding those terms

with orders of less than one (i.e., orders of delta and its

multiples), the axial linear momentum equation becomes:

LA~j 4 V~(2.5)

Now consider the normal linear momentum equation:

0 (2.6)

The new stress tensor term al62 is defined as (4:61):

Substituting for the stress tensor terms yields:

[ , , , ,,(2.8)

L 2.

where the orders of magnitude were again written under each

term, as usual. The only term to survive in this equation

- is the partial derivative of pressure in the y-direction:

. . . . . . . ... Iii ii



0 (2.9)

Finally, consider the energy equation:

~ LP T - V7  C__.1  (2.10)

Substituting once more for the stress tensor terms:

I i I -

Vo 4

S SL L - -<"

- " - 0

the order of magnitude are once again listed under each term

for which they are known. The resulting equation is:

"a " 4"  (2.12)

This is equivalent to the usually accepted boundary layer

energy equation.

Eqs. 2.1, 2.5, 2.9, and 2.12 show explicitly the major

assumptions in Prandtl's boundary layer theory. Eq. 2.1

shows that the dominant velocity term is in the axial direc-

tion; it will dominate the characteristics of the boundary

layer. Eq. 2.5 reinforces this point and, along with Eq.

2.9, shows that the pressure distribution in the boundary

layer varies only in an axial direction. The surface pres-

sure is virtually equal to the impressed freestream pres-

sure. Any shock wave-boundary layer interaction is ignored

9
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by this assumption. Finally, Eq. 2.12 shows that virtually

all the heat transfer occurs in the normal direction, with

almost no axial diffusion. The consequence 3 of Eq. 2.12 are

that Ax is of order one. But if Ax is of order delta, such

as across a discontinuity in wall temperature, the axial

diffusion of energy is neglected. It should be noted that

these results are best applied to incompressible or low-

speed compressible flow problems.

REASONS FOR DISCARDING BOUNDARY LAYER SOLUTIONS

Boundary-layer oriented solutions were discarded a

priori for this study for two basic reasons. First, the

(. temperature derivatives in the streamwise or axial direction

are ignored. Second, the boundary layer solutions do not

adequately model the shock wave-boundary layer interaction

that occurs at hypersonic Mach numbers.

The question of temperature derivatives is straightfor-

ward. Recall that this study wishes to investigate the

nonisothermal wall effect. One of the constituents of the

nonisothermal wall effect could be axial diffusion. Yet

boundary layer theory ignores axial diffusion. Therefore,

nonisothermal wall effect cannot be properly investigated

with a tool that ignores axial diffusion.

The interaction of the leading edge shock wave and the

* boundary layer is a important part of the the flow field

structure. Such shock wave-boundary layer interactions have

100,



long been recognized as important; see, for example, an

early article by Nagamatsu and Sheer (4:454-462). In this

article, Nagamatsu described how induced surface pressures

from the interaction were as high as twelve times the

freestream pressure for a similar freestream Mach number.

- Clearly, in such an environment, boundary layer assumptions

break down and more realistic models must be used. These

two factors were the greatest contributors to discarding

boundary layer solutions for this effort.

NAVIER-STOKES SOLUTIONS

The method of choice for solving fluid flow problems is

(O solving the Navier-Stokes equations. Unfortunately, a

general analytical solution is not available for the

majority of applications; numerical solutions must be

resorted to, as they were in this study. 'Small-scale'

effects such as the nonisothermal wall effect can be seen

and their importance evaluated.

The Navier-Stokes equations used here are written in

conservative form, that is, in terms of /, / ,

and e. The full set of equations used are:

Lk 
O

-_A-

I T

k 2]
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(2.13)

.) T t' -. ' -

where:

(2.13a)

~~-0 Rt &Y)

The grid used in this study is semi-adaptive; a complete

discussion will be given below. The code used tranforms the

(O equations internally.

HEAT TRANSFER MODELING

Heat transfer is expressed in this study as the convec-

tive heat transfer coefficient, h, also known as the film

transfer coefficient. It is defined as:

(X7' (2.14)

0 and is expressed in Btu/ft 2 -sec-deg R. To be able to com-

pare results with Woo (3) and Hodge, the convective heat

transfer coefficient is nondimensionalized with respect to a

. -reference convective heat transfer coefficient based on

12

........................................... . . . .



A

freestream quantities:

.(2.15)

Note that the only variable is the distance along the wedge

in feet, x. Thus, href is truly a reference condition at

any point along the surface of the wedge. According to

Eckert, for an isothermal wall and no viscous shock-boundary

layer interaction, the ratio of h to href is independent of

X.

In both quantities, the coefficient of viscosity, /-I is

determined by Sutherland's law:

-;/ 2-7.lo (2.16)

Although Sutherland's law is generally considered to be

valid down to about 180 deg R (4:19), Hodge et al have

determined that Sutherland's law can be applied to lower

temperature flows with minimal error (2:2). The thermal

conductivity of air is computed by:

(2.17)

with units of Btu/ft-sec-deg R. The Prandtl number is taken

to be constant, Pr = 0.72. Both the coefficient of viscosi-

ty and thermal conductivity are computed at the wall condi-

tions.

Eckert's reference temperature, T , can be used to

validate the use of Sutherland's law for computation of the

1

0?i
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#*

" coefficent of viscosity. T is defined as (6:304):

T 0.1~)2 71 -T) (2.18)

where Te is the boundary layer edge temperature (also equal

to the freestream static temperature behind the shock), and

Tw is the wall temperature (which will vary for the

nonisothermal wall). Adiabatic wall temperature, Taw, is

defined as (6:301):

Ta=i~j~+(k~ (2.19)
where the recovery factor, r, is taken to be a constant, r

0.9. This is not the generally accepted definition; the

recovery factor is usually defined as the square root of the

Prandtl number. However, this alternative definition sim-

plifies computations, causes only a few percent deviation

from convective heat transfer coefficient computed with the

"traditional" recovery factor, and allows direct comparison

with Hodge's and Woo's results. T is an empirical

correcting factor. Eckert found that if one assumes the

specific heats to be constant, one can use T to correlate

many "exact" laminar boundary layer solutions to within a

few percent. It is also apparent that if T is greater than

180 deg R, Sutherland's law is appropriate for the coputa-

tion of the coefficient of viscosity. In this case, T is

equal to over 765 deg R. Thus, the use of Sutherland's law

is justified.

14
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CHAPTER III: NUMERICAL SOLUTION METHODS

OVERVIEW

This chapter will consider the generation and use of

the numerical grid and the numerical implementation of the

Navier-Stokes equations in NONISOCODE using MacCormack's

explicit method.

NUMERICAL GRID

The numerical grid used in this study was a semi-

adaptive grid. It was generated in such a way so as to

achieve two goals: a) maintain about ten points in the

boundary layer at all positions along the plate, and b)

maintain thirty points in the normal direction at all sta-

tions along the plate. The combination of these two goals

led to the use of a semi-adaptive grid.

The normal grid distribution was found to be the solu-

tion of the following differential equation:

L'L (3.1)

The solution to this equation is:

SL - )
where y is the solved physical location of the normal grid

point, Ymax is the highest physical grid location, is

athe number of the grid point being solved for, -* max is

i " the maximum number of grid points, and 0 is the stretching

15
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i :ii -.-,- : ...- . . : - . . . : ;. - ,* . : .: - :- i- .. -" : : - * *:- i,-: -i":;":'* - :"



exponent.

The primary goal was to maintain about ten points in

the boundary layer at all stations in the streamwise direc-

tion. This was required in order to adequately model the

temperature inversion that exists there. An earlier phase

of this effort had shown that it is very easy to miss that

inversion if the grid isn't carefully planned, thus

rendering the results useless. The limit of ten points in

the boundary layer was set to keep the required stretching

down; NONISOCODE will not run a grid that has a stretching

exponent much greater than -0.15. Ten points was considered

an acceptable compromise between desired level of detail and

the requirements of the parent code.

The secondary goal of maintaining thirty points in the

normal direction at all stations was an objective of

convenience. It would have been possible to use forty,

fifty, or more points in the normal direction to achieve any

desired level of detail; however, the price paid is that of

increased run time for the solution and increasingly

unwieldy arrays. Use of more than thirty points in the

normal direction was considered unneccesary for the level of

detail desired. To do so would have required more modifica-

tions to the code; simple enough in theory but prone to

error in application.

Generating the grid was a trial-and-error process.

There were several known constraints. One was the minimum

16
I

. . - - - - - - - - - - - - - - - -



- -..- height of the grid needed at the downstream edge of the

computational domain in order to pass shock and Mach waves

(i.e., not have them reflect off the far-field boundary).

Another constraint was the compromise between the number of

points in the boundary layer and the total number of points

in the normal direction mentioned above. It was decided

that the grid should grow in the normal direction

proportional to the boundary layer thickness. Allowing Ymax

to increase while maintaining the same exponential stretch

and total number of points was done using this equation:

GRIDYi = GRIDYref (3.3)
Xref)

The normal coordinate is proportional to the square root of

the ratio of the current streamwise coordinate to a

reference coordinate. The constant of proportionality is

the reference normal coordinate. The choice of the

reference coordinate is somewhat arbitrary; the driving

factor influencing it is the location of the closest point

to the leading edge that allows ten points in the tempera-

ture inversion. For an exponential stretching coefficient

of 0 = -0.15, that location was X/L = 0. The actual grid

growth began at the leading edge; prior to that, the grid

used was a rectangular, regular grid for the three points in

the freestream ahead of the wedge. The rationale here is

that freestream conditions are not computationally severe

and hence can be accomodated in a regular grid. Beginning

17
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-he semi-adaptive grid at the leading edge accounts for the

growth of the boundary layer.

Figure 2 is a plot of the grid used in this study.

Note that the initial gradient of the parabolic grid is

quite steep. This is because the boundary layer is growing

very quickly near the leading edge. Note also that the

steepest grid gradients are in the most benign flow region.

Near the leading edge, the shock wave is very close to the

surface and the boundary layer is very thin. Thus, at the

far-field boundary, the flow is essentially inviscid and at

freestream conditions. The stagnation region, the area of

sharp turning in the flow, and the shock wave are all pre-

sent in a region of relatively small grid gradients, not(.
unlike the gradients found elsewhere in the computational

domain.

MACCORMACK'S EXPLICIT METHOD

NONISOCODE implements the Navier-Stokes equations using

MacCormack's explicit method. MacCormack's method is one of

the best known methods for numerically solving supersonic

and hypersonic flow problems. Originally presented in 1969

(8), the method has become widely used for many high-speed

problems.

The adjective 'explicit' refers to the fact that a

solution at any point in the flow is independent of the

solution at any other point at that time step. One of the

* 18



distinguishing characteristics of super- and hypersonic

problems is that information cannot travel upstream, since

the flow velocity everywhere (except in a very thin region

within the boundary layer) is greater than the speed at

which flow information can travel - the speed of sound. In

the problem under consideration, the vast majority of the

flow to be solved is in the hypersonic flow regime with only

a small (but important) region in the subsonic regime.

Thus, a solution method that is efficient in the hypersonic

regime is desirable. MacCormack's explicit method is an

efficient method at high velocities (i.e., super- and hyper-

sonic). It is true that a very important portion of the

(O flow to be solved is subsonic (the boundary layer where the

bulk of the heat transfer occurs). It is also true that

implicit methods are more efficient in subsonic regimes.

However, since the overall flow is mixed, MacCormack's ex-

plicit method is the more advantageous overall.

* DERIVATION OF MACCORMACK'S EXPLICIT METHOD

Recall the two-dimensional Navier-Stokes equations

derived earlier:

0 (3.4)

-S..
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where:

- P .(3.4a)L.. - (h

Z~- o ( 3.4b)

Lt

P (3. 4c)

*: p'4v

MacCormack's method states that, if the solution un is

known at time t=n &k t at each point in the mesh, then at

time t=(n+l)&t the solution can be described as:
un+l j = ( th t)Un. (35)

where V (& t) defines these operations:

:::: o-, [ . .,-kt- .- .~t - -'.L - F . V7

:- (3.6)

..- 6 t r .

":-.: P£i f ( * P j)L6'o

method is shown by considering the computation of density:

(3.7)

Now we write Equation 3.7 in terms of its components:

n~t2.~ L * nt C . (3.8a)
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Note that: - {Lp ., 2

J P" )L (3.9)

Thus, the two computations should proceed simultaneously.

TRUNCATION ERROR OF MACCORMACK'S EXPLICIT METHOD

The truncation error of MacCormack's explicit method is

second order, as mentioned earlier. This is true only of

the combined form:

' - -" - , j - " ( 3 .1 0 )

By themselves, the p redictor and cortec or are only first

order accurate. The use of backward space differencing in

04
the predictor and forward space differencing in the correc-

tor (or vice versa; as long as the directions are different)

allow the method to achieve second order accuracy.

STABILITY OF MACCORMACK'S EXPLICIT METHOD

The stability of MacCormack's explicit method has not

been analytically demonstrated yet. According to MacCormack

* ((9:3) and (9:152-154)), some insight could be derived from

approximations. For instance, one could linearize the Na-

vier-Stokes equations and then study the amplification of

Fourier components of the solution (9:152). Alternatively,

one could examine three separate parts of the Navier-Stokes

equations (inviscid, viscous, and mixed derivatives) and

Q 21
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find stability conditions for each part (9:3). MacCormack

did postulate stability criteria as follows:

+

This condition is usually called the Courant-Friedrich-Levy

(CFL) condition. The implementation of MacCormack's method

in NONISOCODE uses a form of the CFL condition computed at

each streamwise strip for different ay's which ignores the

viscous contributions. The implementation in NONISOCODE is

also in transformed coordinates, so that its form is

somewhat different from that of Eq. 3.11.
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CHAPTER IV: PROGRAM DESCRIPTION

OVERVIEW

This chapter will discuss the tt- primary codes used in

this study, NONISOCODE and STEADY. Each code will be

discussed in some detail. Listings of both programs can be

found in the Appendix A.

NONISOCODE

The Navier-Stokes simulation code used in this study,

NONISOCODE, is a derivative of a code written by Dr J. S.

( Shang et al at the Flight Dynamics Laboratory (AFWAL/FIM),

Wright-Patterson AFB, Ohio. A copy of the program listing

is found in Appendix A. This section will describe the

major parts of NONISOCODE and discuss special features in

the code developed for this study.

Program Overview

NONISOCODE is a two-dimensional Navier-Stokes simula-

tion designed for use with super- or hypersonic flows. It

uses MacCormack's explicit method to compute flow quantities

and includes a pressure damping subroutine to allow damping

of Gibbs phenomena. The code from which NONISOCODE was

adapted was originally designed to analyze three-dimensional

flow problems; the basic structure of NONISOCODE still

23
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reflects this. The original program was designed to compute

flow conditions for an axial 'page' and then sum all the

'pages' together for a three-dimensional flow solution.

This structure facilitated vectorization of the code for

parallel processor computers; however, it does run on 'sca-

lar' machines as well. NONISOCODE only computes two-dimen-

sional flows, but still retains the three-dimensional struc-

ture; thus, flow variables will be written as P(K,J,l). The

inclusion of the unitary third dimension reflects the actual

two-dimensional nature of the problem. A brief discussion

of each subroutine follows.

CO Subroutine MAIN

This portion of NONISOCODE is the executive. It ac-

cepts input values, directs most subroutine calls, and out-

puts results. There are three output files. The first is

used to restart the computation from a given point in time.

This is done because a converged solution generally requires

about 40,000 iterations; most computer operating systems

have much lower time limits than implied by that number.

The second output file is tied to this restart capability.

In order to get a quick look at the state of the computed

flow field, this output file holds the most important flow

variables at each point in the field: density, velocity

components, pressure, temperature, and turbulent eddy

viscosity. In addition, there is a list of surface condi-
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tions for each grid point along the surface. The final file

is a graphical output file which is designed to interface

with several common graphics packages. This file contains

velocity components, temperature, pressure ratios, Mach

number, and density for each grid point in the field.

Subroutine EDDY

This subroutine computes the eddy viscosity matrix for

the flow field using the Baldwin-Lomax viscosity model.

However, since wind tunnel tests have shown that the flow

over the wedges modeled is laminar, this subroutine is

superfluous and is bypassed. Subroutine MAIN loads zero

values into the eddy viscosity matrix and does not call-- (.
EDDY.

Subroutine PREAMB

PREAMB is used to establish the initial conditions for

the solution of the Navier-Stokes equations. PREAMB estab-

lishes the freestream flow field over the entire

computational domain, thus giving an impulsive start to the

solution. As will be discussed later, the initial condi-

tions at the upstream boundaries permit the use of a wedge

angle. There is a provision for three points in the

freestream to allow the fourth-order damping routine to

operate in the stagnation region. The surface initial con-

ditions are no-slip. The downstream boundary is nonreflec-



tive, allowing waves to pass out. None of the other

boundaries are; this can be a cause of many problems if the

grid is improperly designed.

Subroutine TMSTEP

TMSTEP computes the CFL condition required for stabili-

ty of the solution. The CFL condition is computed for each

space step in a streamwise row of grid points. The minimum

time step in each row is selected and compared to other

minimum time steps in the grid from the surface to the far-

field boundary. The minimum CFL condition is then chosen as

the CFL condition for the entire flow field. It is then

multiplied by an input CFL factor (always less than one) to

guarantee numerical stability. A CFL factor is required

because the CFL condition only guarantees neutral numerical

stability and because the diffusion terms weren't included.

From this description, it can be seen that such a scheme is

inefficient with grids that are irregular or are highly

stretched. The minimum CFL condition will be based on the

smallest space step but will drive the integration step size

for the largest space step. Consequently, the solution will

slow down proportionally. This was the case in this study;

the grid used is semi-adaptive and exponentially stretched

in the normal direction. The CFL condition will be based on

space step sizes near the wall, while space steps at the far

field boundary are an order of magnitude larger.
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Subroutine BC

This subroutine sets the boundary conditions for the

solution. It is called for each iteration. The surface

boundary condition is the classical no-slip boundary condi-

tion; this prevents the investigation of possible slip flow

in the stagnation region of the wedge. All inflow boundary

conditions are Dirichlet boundary conditions where the

values of the flow properties are specified. The outflow

boundary (downstream) uses Neumann boundary conditions,

where the gradients of the flow properties are zero. Thus,

all inflow boundaries do not permit waves to reflect from

them (which isn't physically correct and can cause numerical

problems); having a shock wave impinge on the far-field

* boundary, for instance, is a sure way to bomb the sol'ition.

The downstream boundary does permit waves to be absorbed and

not reflected; a shock can 'exit' the downstream boundary

and not affect the solution. The use of Dirichlet boundary

conditions for inflow boundaries (upstream and far-field)

specify the minimum height of the normal grid; it must be

higher at the trailing edge than any waves that might impinge.

Subroutine TRANS

TRANS is used to transform the physical coordinate

system into a regular, rectangular grid for computation. A

generalized transformation is derived using the chain rule
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(assuming that a transformation exists, i.e., the Jacobian

of the transformation is nonzero and positive). The

transformation scale factors (derivatives) are approximated

using second order central differences. The output from

TRANS is a transformed grid matrix of scale factors used in

all subsequent computations.

Subroutines PAGE, [ETA(J), LZETA(J), SUM

This set of subroutines represents the application of

MacCormack's explicit method to the solution of the two-

dimensional Navier-Stokes equations. PAGE is a holdover

from the original three-dimensional version of the code; it

is essentially a controller for the following subroutines.

LETA(J) computes the flow derivatives with respect to the

streamwise transformed coordinate eta; LZETA(J) does the

same with respect to the tranformed normal coordinate zeta.

SUM(J) sums both of those sets of derivatives for a final

solution. SUM(J) also calls the final subroutine, when

appropriate.

Subroutine DAMPING

DAMPING is used to control the generition of Gibb's

phenomena (oscillations) in the solution. The type of pres-

sure damping used is an artificial viscosity. Although the

Mach number modeled is quite high, the pressure damping

required turned out to be rather low, on the order of 0.4.
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SPECIAL FEATURES

Two special features were incorporated into NONISOCODE

in order to analyze the nonisothermal wall. The first is

the incorporation of the wedge angle. The original code

* from which NONISOCODE was adapted could only consider

axisymmetric, zero angle flows. In order to perform this

study, wedge angles had to be included in subroutines PREAMB

and BC. In those subroutines, the velocity components U and

V were replaced by U cos S and -U sin S. Once the wedge

angle is included in PREAMB and BC, the flow solution will

include it from then on.

The other special feature included in NONISOCODE was

the ability to enter a step in wall temperature at any point

along the surface of the wedge. This required two modifica-

tions. The first was a major change in some of the logic in

- PREAMB and BC. The step in wall temperature was included

with IF statements that keyed on where along the surface the

solution was. Before a certain point, Tw would be Twi;

after that point, Tw 2. The second modification installed a

key, KG, which corresponds to the station of the wall

temperature discontinuity, in the input files and the code.

Thus, a user can set Twl, Tw 2  and KG to whatever is de-

S-. sired; the wall temperatures can be the same (as was done in

this study for the isothermal wedge) or, for the same ef-

fect, KG can specify the trailing edge of the surface. Or,
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as was done for the nonisothermal portion of the study, the

discontinuity can be placed anywhere on the surface. In

order to preserve the generality of the code, Twi and Tw 2

are specified in separate statements that determine TwF

which is then used.

STEADY

STEADY is the heat transfer code developed specifically

for this study. It is a simple code, but it does

incorporate some interesting points. A listing of STEADY

can be found in Appendix A.

STEADY is designed to read the restart files of NONISO-

CODE and extract the field temperature from them. It then

computes the reference convective heat transfer coefficient

to be used to nondimensionalize the convective heat transfer

coefficient. The convective heat transfer coefficient is

then computed. Again, the change in wall temperature is

accounted for (if the wedge is nonisothermal; if not, an

input value bypasses those lines). The coefficient of vis-

cosity is computed based on the wall temperature. Thermal

conductivity thus includes the varying wall temperature.

One particularly interesting aspect of STEADY is the

way the partial derivative of temperature with respect to

normal distance is computed. Ty must be computed in the

transformed plane to maintain second order accuracy. As

306



noted before, Ty can be represented as:

41 --- (4.1)

Due to the physical grid used, 1 0. Thus, Ty is now

represented as:

- /(4.2)

This derivative can be computed as the quotient of two

three-point, one-sided differences with respect to eta.

Those differences are second order accurate.

There are two output files. The first prints a listing

of X/L, reference convective heat transfer coefficient,

local convective heat transfer coefficient, and the

nondimensional ratio H/Href. The second output file is a

listing of X/L and H/Href for use in plotting.

Convergence is determined by comparing the convective

heat transfer coefficient between NONISOCODE runs, which are

usually 2000 iterations apart. If the percent difference

between the two convective heat transfer coefficients is

less than 2%, the solution is considered to have converged.

The difference between isothermal and nonisothermal convec-

tive heat transfer coefficients is determined in essentially

the same fashion. The equation used is:

( Anew- Aold

) X 100% Difference (4.3)
Aold
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CHAPTER V: RESULTS

OVERVIEW

This chapter will discuss the results of the numerical

simulation of the isothermal and nonisothermal wedges.

There will be a brief discussion of the limitations of the

* - results, due primarily to the analytical technique used.

The heat transfer solution for both the isothermal and the

nonisothermal surfaces will be discussed. The flow field

conditions at convergence will be described. The presence of

shock wave-boundary layer interaction will be discussed

briefly, also. Its possible effect on the solution will be

considered. Finally some peculiarities of the NONISOCODE

solution will be discussed

C.

FLOW CONDITIONS

Both the isothermal and nonisothermal wedges were

. modeled under the same conditions. The freestream Mach

number was 14.24 and the freestream stagnation temperature

was 2000 deg R. As a result, the freestream static tempera-

ture is only 48.13 deg R and the freestream static pressure

is only 0.4981 lbs/sq ft. The speed of sound is 340 ft/sec.

The wedges were modeled with a three degree deflection

angle, the lowest angle discussed in Cappelano (1:14).

These conditions guarantee that boundary layer gradients

will be quite steep and the stagnation area conditions

severe. The surface temperatures were as follows. For the
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isothermal wedge, the surface was considered to be at a

uniform temperature of 540 deg R. The nonisothermal wedge

had a leading edge temperature of 540 deg R and a trailing

edge temperature (after the discontinuity) of 700 deg R.

LIMITATIONS OF THE RESULTS

The chief limitation in this study is the size of the

streamwise integration step, delta x. Considerable time was

spent on determining and applying the correct distribution

of normal grid points. This was necessary in order to

sufficiently resolve the temperature inversion layer in the

region of interest near the discontinuity. In the course

of that investigation, it was found that NONISOCODE did not

handle a highly stretched grid well; in fact, if the

exponential stretch factor, Q, exceeded about -0.15, this

particular problem wouldn't run at all. That is due to a

combination of the grid and the particular initial condi-

tions (high Mach number, steep gradients, etc.). Due to the

time spent on the normal grid, there was insufficient timp

to properly investigate the streamwise grid distrxhutl,,.

Because a discontinuity in surface temperature is being

investigated, it would be desirable to have a high concen-

tration of grid points in the vicinity of the discontinuity.

In fact, at one point, a double exponential stretch was

considered, with the first stretch in the normal direction
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and the second extending both up- and downstream from the

discontinuity. However, the limitations of NONISOCODE and

the lack of time available forced the use of a constant grid

distribution in the streamwise direction. Thus, the solu-

tion in the immediate vicinity of the discontinuity suffers

from truncation error and subsequent 'smearing'. As will be

noted later, this effect can be seen in the plots of the

nonisothermal convective heat transfer coefficient.

Another limitation to the results to be discussed is

the modeling of the leading edge. When the normal grid

distribution was established, it was determined that a semi-

adaptive grid would be used, one that grew in relation to

the growth of the boundary layer. It was desired to main-

-( tain about ten points in the boundary layer to sufficiently

resolve the temperature inversion. The profile that the

grid was based on was at X/L = 0.2. This was done in order

to escape the direct effects of the shock wave-boundary

layer interaction and the stagnation region and to avoid a

more stringent stability criterion. As a result, from X/L =

0 to X/L = 0.2, the normal grid distribution is constant and

will not necessarily contain enough points in the boundary

layer to accurately model the temperature inversion. When

heat transfer is computed, the partial derivative V is

computed using three point, one-sided differences in Vand

This requires at least three points inside the tempe-

rature inversion to approximate the slope. Those points are
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" not guaranteed prior to X/L = 0.2. Thus, no results are

presented for the leading edge region; the numbers would be

inaccurate and misleading.

Another point to consider in interpreting the results

is the format in which the results are presented. Strictly

speaking, this isn't a limitation, but it is important to

correctly interpreting the results. Consider Figures 4 and

5; they are representative surface and contour plots,

respectively. Note that in Figure 4, the data appears to

stop along a parabolic curve, nowhere near the apparent far-

* field boundary shown in the plot. In fact, the parabolic

curve is the far-field boundary of the computational domain,

as explained earlier. The appearance of the plot is an

( Oartifact of the plotting program, DISPLAA. DISPLAA only

recognizes a rectangular grid, so that data presented for

the parabolic semi-adaptive grid shows up superimposed on a

zero-value rectangular background.

The same effect is visible in Figure 5, the representa-

tive contour plot. Here, the edge of the computational

*' domain is shown by a very close clustering of contours,

showing the drop from free-stream values to an artificial

zero value. In both cases, the zero-value data had to be

* inserted to allow DISPLAA to plot the semi-adaptive grid

results. As a beneficial side effect, the presence of the

zero-value data serves to constantly highlight the shape of

*g the physical computational domain.

35
0



HEAT TRANSFER SOLUTIONS

The first results to be discussed are the heat transfer

solutions. Figure 3 is a plot of the nondimensionalized

convective heat transfer coefficients for the isothermal and

the nonisothermal surfaces and experimental data from Hodge

et al (2:8, 10). Nondimensionalization was accomplished by

ratioing the dimensional convective heat transfer coeffi-

cients to a reference convective heat transfer coefficient

described earlier. Hodge's data was already

nondimensionalized in the same fashion; the only correction

that needed to be made was to shift his data points

downstream to account for the presence of three grid points

in the freestream ahead of the leading edge in this study.

4. Consider first the isothermal convective heat transfer

coefficient, plotted as a solid line in Figure 3. It is

fairly constant about the value h/href = 1.741 for the

region from X/L = 0.2 to X/L = 0.9. There is only a 3.4%

variation from this value over this range. Note that the

ratio does tend to trail off somewhat towards the trailing

edge of the wedge. The theoretical value for an isothermal

h/href is constant; the variation shown is probably due to

truncation error in the computations.

The nonisothermal h/href is shown by the dotted line in

Figure 3. Up to about X/L 0.42, the nonisothermal and the

isothermal values are identical, which is to be expected.

* At X/L = 0.42, the nonisothermal curve begins to oscillate
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somewhat in the immediate vicinity of the temperature

discontinuity on the wedge. Immediately thereafter, h/href

plummets to 0.64 and then recovers slowly to values about

17% below the isothermal values. This difference between

the isothermal and the nonisothermal values after the

discontinuity is expected due to the higher temperature of

the trailing edge's surface, 160 deg R hotter than for the

isothermal wall.

The slow recovery of the nonisothermal h/href is due in

part to truncation error 'smearing' the convective heat

transfer coefficient. However, some of the lag in recovery

is due to the axial diffusion of energy. Within the scope

of this study, it is impossible to separate the contribu-

tions of truncation error and axial diffusion to the h/href

recovery lag; it is, however, clear that axial diffusion of

energy is occuring, that the nonisothermal wall effect is

present. The lack of recovery indicates that some of the

energy is being convected downstream and is consequently

reducing the local convective heat trarqfer.

Hodge's experimental data are also presented in Fig. 3.

The isothermal data is for a thin stainless steel plate

(2:2, 5); the nonisothermal data is for an FRSI test sample

(2:2, 6). The isothermal data, plotted as +'s, shows a

close correlation with the isothermal Navier-Stokes predic-

tion, with only a 2.3% average variation from the computed

data over the trailing edge portion of the plate. The
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agreement is best for the first five points; as the trailing

edge is approached, the experimental data diverges slightly.

The reason for this divergence is unknown. There are only

three data points available for the nonisothermal FRSI test

article. Fig. 3 shows these points, plotted as O's,

reflecting the same trend of recovery after the discontinui-

ty as the Navier-Stokes prediction. The maqnitudes of the

computed and experimental convective heat transfer

coefficients match fairly well for the first and third

experimental points; the middle experimental point is well

off the computed curve. The reason for this disagreement is

unknown. Note, however, that the behavior of the two

computed curves and the isothermal thin-skin points is

0. similar; they all seem to have a "hump" between X/L = 0.6 and

X/L = 0.75.

Finally, note that the behavior of the computed and

experimental curves is quite different. The computed

isothermal and nonisothermal curves tend to follow on

another after the discontinuity, allowing for the 17%

difference. The slope and shape of the two curves are quite

similar. The isothermal and nonisothermal experimental

curves do not tend to mirror one another. As noted above,

the nonisothermal data tends to approach the isothermal data

as the trailing edge of the wedge is approached. Indeed,

the last values show only a 7.6% difference between them. It

has been suggested, in another context, that what is
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happening in the experimental data near the trailing edge is

a three-dimensional effect. While there is very little

concrete evidence to go on in this study, it is safe to say

that the experimental and computed nonisothermal values near

the trailing edge are in fairly close agreement. This would

seem to mitigate against any three-dimensional effects.

FLOW FIELD SOLUTIONS

Results of NONISOCODE simulations are plotted in Fi-

gures 4 through 27. The results for the isothermal wall are

shown in Figures 4 through 15; the nonisothermal wall in

Figures 16 through 27. The surface plots for pressure and

(. density clearly show the leading edge shock wave. The shock

angle is in the vicinity of 6 degrees, agreeing with theory.

The pressures behind the shock are about 50% higher than

predicted by Rankine-Hugoniot shock jump equations; this is

due to the shock wave-boundary layer interaction. Behind

the shock, outside of the boundary layer, the freestream

static temperature is close to the 64.95 deg R predicted by

Rankine-Hugoniot theory. As these examples show, NONISOCODE

has done a good job of modeling the flow field. One

. interesting point is the size of the temperature inversion.

The surface plots of temperature, Figures 10 and 22, show

the inversion clearly defined by the ridge near the bottom

* edge of the plot. It can be seen that the inversion is only

about 0.0096 ft tall (about 0.1 in). This is a very small
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1-,region for such a large temperature rise.

Another interesting point is the surface pressure dis-

tribution. Figure 28 shows the isothermal and nonisothermal

surface pressure distributions, as well as a theoretical

Rankine-Hugoniot line. The analytical curves are identical

prior to X/L=0.6, but after the flow crosses the thermal

discontinuity, the nonisothermal surface pressure

experiences a pressure spike of about 0.2 lbs/sq ft. The

spike occurs about 3/4 inch (0.0632 ft) behind the

discontinuity. After this spike, the nonisothermal surface

6 pressure decays in a similar fashion to the isothermal

surface pressure, but at a value about 4% above it.

The pressure spike can be explained in terms of the

thermal boundary layer. At the discontinuity, the surface

temperature jumps from 540 deg R to 700 deg R; this will

cause a corresponding increase in the thickness of the

thermal boundary layer. When this "bloom" occurs, compres-

sion waves are generated in the flow field. Assuming that

the Mach cone for these compression waves is centered at the

edge of the boundary layer at the discontinuity, the Mach

angle (defined as the inverse sine of the reciprocal of the

edge Mach number) is a little greater than 4 degrees. The

compression wave will impinge the surface of the wedge about

0.6 inches behind the discontinuity. Referring to Figure

28, it can be seen that this is where the pressure spike

occurs. The actual calculated point of impingment is at X/L
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0.69564; the computed pressure spike occurs at X/L

0.6681. This 4% discrepancy can be explained by the fact

that, as the compression wave goes deeper into the boundary

layer, flow Mach number decrease rapidly and the compression

wave is "bent back", causing the wave to impinge slightly

ahead of the predicted point.

The Rankine-Hugoniot line at the bottom of the plot

shows the theoretical downstream pressure; if traditional

boundary layer assumptions had been applied, this v value

would also represent the surface pressure behind the shock.

It serves to demonstrate the effect of the shock wave-

boundary layer interaction; the predicted pressure behind

the shock is significantly lower than the computed (and
i (0

actual) pressure due to the interaction of the shock wave

and boundary layer.

In general, the flow field solutions for the isothermal

and nonisothermal wedges are quite comparable, with the

obvious difference of the temperature discontinuity. Both

solutions are accurate models of the real flow field. With

the agreement between model and reality demonstrated, the

heat transfer results can he considered as accurately

modeling the physical. situation.

SHOCK WAVE-BOUNDARY LAYER INTERACTIONS

An interaction of the bow or leading edge shock wave

and the boundary layer is a phenomenon that will occur in
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most hypersonic aerodynamics problems. Its presence in this

problem was not unexpected. The presence of the interaction

affects the flow field solution and the heat transfer. The

discussion that follows is based on the work of Dorrance

(11:144-148). It should be noted that no effort was made to

analyze in depth the shock wave-boundary interaction;

rather, the presence of the interaction was observed, its

strength calculated, and a qualitative overview of its ef-

fects was made.

When an object is moving at hypersonic speeds, the

displacement thickness is much larger than for the same

object at slower speeds. This is due to the higher tempera-

tures found in a hypersonic boundary layer. The larger size

of the displacement thickness means that the effective shape

of the body is changed to include the displacement

thickness. At the leading edge, the flow is turned sharply

away from the surface; this turning gives rise to a series

of compression waves that coalesce into a shock. The very

presence of the shock affects the growth of the boundary

layer. This interaction is the shock wave boundary layer

interaction.

The strength of this interaction can be estimated by

computing an interaction factor % , defined as:

= (C I / 2 M3 )/ReI/2  (5.1)
where C = ,op/( pe/6e) (5.2)
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If this interaction factor is greater than 1, then the

effects of shock wave-boundary layer interaction must be

accounted for. In the current problem, ' at the leading

edge has a value of about 20.2; it drops off to a value of

2.65 at the trailing edge of the wedge. ( is greater than 1

and the interaction must be considered. Referring again to

Fig. 28, the presence and magnitude of the interaction can

be seen by comparing the analytical pressure curves with the

theoretical line. Near the leading edge, the computed pres-

sure is about 50% greater than the theoretical value. Fur-

ther downstream, this difference decreases to about 20%.

NUMERICAL OSCILLATIONS

When examining the surface plots in Figures 4 through

27, it is very easy to see oscillations in the plots for

streamwise velocity, temperature, and, to a lesser extent,

Mach number and density. These oscillations, seen most

easily in the surface plots for streamwise velocity, have

one probable origin.

The most probable explanation is that the oscillations

are artifacts of the plotting process. This determinationa
comes from the nature of DISPLAA, the program used to gene-

rate the plots. The version of DISPLAA used requires a

rectangular grid to plots its data. If the data are

presented in a non-rectangular format, DISPLAA uses a nine-
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point linear average interpolating scheme to interpolate the

data to a rectangular grid. This problem did not use a

rectangular grid, and the results are presented in the semi-

adaptive grid format. Thus, DISPLAA has interpolated the

data to fit its own grid. Now the oscillations are most

apparent in the streamwise velocity surface plots and the

temperature surface plots. The gradients here from the

surface to the freestream are, in absolute terms, the most

severe encountered in the entire solution. The next most

severe gradients are to be found in the temperature solu-

*tion, partly because temperature is dependent on flow velo-

city. Realizing that the data is interpolated and realizing

that the most severe gradients are present in the plots

where the oscillations are most apparent lead directly to

the argument that those oscillations are artifacts of DIS-

PLAA and are enhanced by steep gradients.

A point to buttress this argument is that the oscilla-

tions do not show up in the data. An investigation of the

raw data plotted shows no oscillations of the kind seen in

.J the surface plots. Also, the oscillations do not show up in

the contour plots. Thus, it is improbable that the oscilla-

tions have any other cause.

4
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CHAPTER VI: CONCLUSIONS AND RECOMMENDATIONS

OVERVIEW

This chapter will discuss conclusions and recommenda-

tions derived derived from the study. Conclusions regarding

the numerical methods used and concerning the nonisothermal

wall effect will be discussed. Recommendations for further

study and possible methods will be presented.

CONCLUSIONS

NONISOTHERMAL WALL EFFECT

This study has demonstrated that the nonisothermal wall

effect can be modeled using a two-dimensional Navier-Stokes

simulation. The nonisothermal wall effect manifests itself

as an 'incomplete' recovery in the nonisothermal convective

heat transfer coefficient after the temperature discontinui-

ty on the wedge surface. The actual magnitude of the noni-

sothermal wall effect was not determined due to numerical

'smearing' caused by truncation error; however, there is no

doubt that the nonisothermal wall effect was modeled by

NONISOCODE. Additionally, it has been shown that the

* numerical results agree closely with experimental results;

differences can be explained by the lack of axial resolution

in the region of the thermal discuntinuity.

A subsidiary conclusion that can be drawn is that
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NONISOCODE adequately models hypersonic flow over wedges.

This is, of course, a necessary condition for the proper

simulation of the nonisothermal wall effect. The tempera-

ture inversion layer and the axial diffusion of heat energy

at the thermal discontinuity are correctly modeled by

NONISOCODE

SHOCK WAVE-BOUNDARY LAYER INTERACTION

It has been shown that a shock wave-boundary layer

interaction did occur and did have observable effects on the

computed solution. The 20% to 50% increase in surface

pressure over theoretical predictions is in general agree-

ment with Nagamatsu and Sheer.

(. PRESSURE SPIKE DUE TO NONISOTHERMAL WALL

The observed pressure spike is a real phenomenon that

is probably a result of the nonisothermal wall effect. Its

probable cause is the impingement of a compression wave on

the surface of the wedge. The compression wave, in turn, is

probably generated by the sudden, almost discontinuous

growth of the momentum and thermal boundary layers at the

discontinuity. This pressure spike may be a distinguihing

characteristic of the nonisothermal wall effect, and might

be used to signal its existence.

NUMERICAL METHODS

The numerical methods used in this study were adequate
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to properly model the nonisothermal wall effect. MacCor-

mack's explicit method was appropriate to the problem. The

grid chosen was appropriate to the problem, with two

specific exceptions (to be addressed below). In particular,

the use of a semi-adaptive grid that grows (in the normal

direction) with the boundary layer was essential to the

success of the study. This grid permitted the investigation

of the temperature inversion in the boundary layer while

allowing shock and Mach waves to escape the downstream

boundary without excessive stretching.

The method used to compute the convective heat transfer

coefficient was entirely appropriate; the use of three-

point, one-sided finite differences in the transformed plane

C.. -

*for JTaretained second order accuracy. The method used to

determine convergence is simple and straight-forward, but it

adequately demonstrates convergence of temperature, the

figure of merit for this study.

There were, however, some significant problems with the

numerical methods used. The most significant problem was

the choice of grid. The use of a regularly-distributed grid

in the strea wise direction simplified computations but it

also induced numerical error in the stagnation region and in

the vicinity of the temperature discontinuity. The solution

in the stagnation region suffered because the grid did not

allow resolution of the stagnation region. A similar prob-

lem occurred at the discontinuity. The problem is more
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serious here because the lack of resolution coupled with the

existence of the discontinuity induces a significant trunca-

tion error. Thus, the less-than-total convective heat

transfer coefficient recovery is, in part, an artifact of

the truncation error. While the recovery does demonstrate

the nonisothermal wall effect, it is impossible to determine

the magnitude of the effect in this study.

Another problem that is of lesser significance is the

- exclusive use of the three-point, one-sided finite

difference to model the partial derivative of temperature

with respect to normal distance. While this finite

difference worked quite well for X/L > 0.4, it is unreliable

for the area near the leading edge. This is due to the

decreasing number of points in the temperature inversion.

It is possible that using a two-point, one-sided finite

difference near the stagnation region would yield valid

results, although at the cost of numerical accuracy. Exclu-

sively using the three-point, one-sided finite difference

denied investigation of the convective heat transfer coeffi-

cient near the leading edge.

RECOMMENDATIONS

There are several recommendations that result from this

study. The first is that the nonisothermal wall effect

needs more study. This effort has shown that it is possible

to accurately model the nonisothermal wall effect; it has
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also demonstrated that there are several shortcomings in the

methods used. More study needs to be done in order to

correctly model all aspects of the nonisothermal wall effect

and to determine its magnitude.

Closely tied to the first recommendation is the second,

which is the use of a more appropriate grid for modeling the

nonisothermal wall effect. Although this study showed that

the inviscid portion of the hypersonic flow can be modeled

with a fairly coarse grid, the stagnation region and the

temperature discontinuity require a much finer, specialized

grid. In particular, the grid should employ dual

stretching: the normal distribution must be stretched in

order to include the temperature inversion, while the

(. streamwise distribution must stretch at the stagnation point

and at the discontinuity. The stretching at the disconti-

nuity should be both up- and downstream to capture the true

character of the nonisothermal wall effect.

The use of such a grid will raise problems with NONISO-

CODE. During the study, several variants of stretched grids

were tried; very few worked. The reason for all the

failures is unknown; however, it became apparent that NONI-

SOCODE in its present form cannot use highly stretched grids

(with a stretching exponent much greater than Q = -0.15).

Whether this is due to the transformation from the physical

to the transform plane or to the implementation of MacCor-

mack's method or to some other source is unknown. That
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aspect requires more investigation.

A further recommendation is to further investigate

numerically the shock wave-boundary layer interaction and

how it affects the nonisothermal wall effect. The interac-

tion has a tendency to increase the surface pressure

downstream of the shock and can influence the heat transfer

characteristics of the flow. The grid used did not allow

sufficient resolution of the stagnation region or the region

about the thermal discontinuity. A different grid will need

to be used to investigate this problem.

A final recommendation is to further study the pressure

spike that is seen to occur downstream of the discontinuity.

It is possible that this spike is a distinguishing

characteristic of the nonisothermal wall effect. Further

investigation could show whether or not the pressure spike

can signal the presence of a nonisothermal wall effect.
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APPENDIX A: PROGRAM LISTINGS FOR NONISOCODE AND STEADY

OVERVIEW

This Appendix will present the detailed listings for

NONISOCODE and STEADY. The programs themselves are ex-

- plained in detail in Chapter IV.
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shock wave-boundary layer interaction is found to have an effect on heat transfer. A
significant surface pressure spike is found to occur downstream of the discontinuity,
which may be a result of the increase in size of the momentum and thermal boundary layers
at the discontinuity.

The study concludes that the nonisothermal wall effect can be adequately modeled by
the two-dimensional Navier-Stokes equations; that the shock wave-boundary layer

• L interaction does have an effect on the heat transfer; and that the occurence of a spike in

surface pressure may be a unique result of the nonisothermal wall effect. Significant
recommendations include the need for further study of the nonisothermal wall effect, tb
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investigate the shock wave-boundary layer effect, and the need for further study of the
surface pressure response to the nonisothermal wall effect.
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